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saws 
I n  this az;icle, a sernL-analy-tical theory of geceral  planetary 

perturbations i s  developed, which i s  somewhat akin t o  H i l l ' s  

theory. 

but  the  theories  of perturbations of higher orders a re  d i f fe ren t .  

m e  inconveniences of B i l l ' s  method, namely: the  t r i p l e  i n t eg ra l  

i n  the  perturbations of the  radius vector and the  redundant constant 

of integration, do not appear here. 

I n  both 'mefnods the  f irst  order perturbations coincide, 

The short  and the  long period 

terms containing the  squares o f  the small divisors  are loca l ized  

and &&ined together. The existence of such a direct way of 

separating these important terms from the  remaining perturbations 

const i tutes  a significant charac te r i s t ic  of a planetary theory. 

The form of decomposition of perturbations as used i n  t h i s  a r t i c l e  

leads t o  a system of d i f f e r e n t i a l  equations easily integrable  by 

H i l l ' s  procedure and t o  a sy-metrical scheme for the  computation of 

perturbations of nigher orders. 



Notations 

I 

m - the mass of the disturbed planet. The mass of the sun is taken as unity. 

m' - the :XES of the disturbing p!z.;ct. 

k - ~ , e  Cxss i an  cons ta t .  

p z  = h2 ( i  +m). 

i - h u;id:sturbcd position-vector of the planer m. 

r I T I .  - 
R - the unit vector normal to the undisturbed orbit plane of the planet m. 

(CI - the angular velocity of rotation of the frame (7, G X  7, G ) .  -. 

io - the unit vector in the direction of i. 

i' - the undisturbed position vector of the planet m ' .  

S i  - the perturbation in the position vector of the planet m. 

i t S i  - the disturbed position vector of the planet m. 

S i '  - the perturbations in the position vector of the planet m'. 

T '  t 67' - the disturbed position vector of the planet m'. 

y of the planet m.  

e - the undisturbed eccentricity of the planet m . 
=-- ' the undisturbed mean motion of the planet m. 

a 3/2 

a - the undisturbed semi-major axis of the planet m.  

p = a ( l - e Z )  . 
f - the undisturbed true anomaly of the planet m . 
v - the del-operator with respect to Y. 

v' - the del-operator with respect to i'. 

E - the base of natural logarithms. 
- = 7 1 - 7 ,  

7, - the perturbations of the k t h  order in the position vector of the planet m .  

iKt - the perturbations of the k t h  order in the position vector of the planet m'. 

pK - rKt - rK . 4 - 4  .-. 
- r - i' n(;, i') =- :+'m (i - - - r ,  ) - the main part of the disturbing function. 

I - the idemfactor. 
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On a Modification of Eill's Method 
of General Planetary Perturbations 

Introduction 

In this article a numerical theory of general planetary perturbations is developed. The per- 
t u rb2 t io i~  a r e  obtained in the standard form of series containing the periodic, the secular and 
the mixed terms. The coefficients of terms are numerical; they a r e  obtained by double harmonic 
analysis as applied to the force coniponents, and subsequent integration. The numerical theory 
of perturbations in the coordinates escapes the inconveniences of the numerical theory in the 
elements: for example, since the eccentricity and the sine of the inclination do not appear as 
divisors in the differential equations, no numerical difficulties a r i se  in the case of nearly circular 
orbits. 

The method presented here - .  i s  somewhat akin to Hill's  method (1874), at least where the first 
order  perturbations are com&rned: in both rqthods the first order perturbations coincide. The 
theories of perturbations of higher orders  in both methods are different. 

We determine the perturbations in rectangular coordinates directly without usbg the per- 
tcrbations in polar coordinates as an intermediary means, as is done L? Hill ' s  inethod. Some other 
inconveniences a r e  removed in the theory presented here: the triple integral 2nd the seventh 
constant of integration so peculiar to Hill 's  method do not appear; the components of perturba- 
tions along the radius-vector a r e  determined in a more direct manner; and the difficulties as- 
sociated with determining the redundant constant of integration vanish. 

In Hill 's  method the undisturbed true anomaly is taken as the independent variable. Such a 
choice causes numerous inconveniences if the perturbations in the motion of the disturbing body 
are also to be taken into account. For this reason the universal variable, time, is used in our 
exposition. 

Since the advent of electronic machines, general perturbations theories can successfully 
compete with numerical integration procedures. The theory of Mars in Hansen's coordinates 
recently developed by Clemence (1949, 196 1) brilliantly confirms this statement. The reference 
ellipse representing the undisturbed motion can be chosen in a variety of ways. The only restric- 
tion imposed is that the difference between the disturbed and undisturbed motions be small, of 
the order of the 2erturbations. 8 
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In the article by Musen and Carpenter (1353) a decomposition of the perturbations in the posi- 
tion vector dong F, G ,  and R w a s  suggested. 2. 
along to, E X  Yo, and ii. This forin of aecompcsi.io.? leads to a n o r e  C O ~ ~ T L S ~  x d  more sy:iic;etri- 
cal scheme for developing perturbations of hisher order t k i  the autlioz's p-cvious scheme. 

- 
p-csent w ~ r k  :>'e 5u =c:;: a ~ ! ~ ' . c o - - p ~ ~ ~ ~ ~ ~  ... A~ii)n a27 - - 

Easic di3erent i - l  eqcntions. 

= pz v (- 1 - +) + &n(7 + 87, 7 '  t 8 7 8 )  

Substituting 

into (l), introducing the differential operator 

and taking the equation 

si 3 s  - 8;; 
t - -  1 

r5 OD,= r 3  

into account, we can re-write (1) in the form 

where 
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In applying the operators V o r  V' we consider every function as a function of ?and 7' only and the 
perturbations S i  and 8i' a r e  considered as relative constants. The operator E~ accomplishes the 
development of (3) into a power ser ies  with respect to the perturbations. 

- - 
Decomposing 87 :,- :r,g the axes Yo,  R x Yo, R and putthg 

w e  Cave in the relative inorios 

Substituting (4) through (6) into (2), we obtain 

where we put 

4 -  

Z R * F  

We shall make use of the standard method of developing the perturbations into power ser ies  
with respect to the disturbing mass and put 

-.. - 
4 - . -  rK - ~ K r o + ~ R ~ ? o + ~ K R  
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F = F, T F2 t B, t , 

4 w!iere YK, tK, qK, &, I -  il; are of x k  crder ic b D'  . 
In the previous article by Masen and Carpenter (i963j, on the basis of the formula 

O E D  = v + * VVt~,' * V' v) 

it was found that 

- F, - 3 I' t 7 7 ,  ' 7 2 + i * 7 2 7 , )  r5 I '  * 

15 '.+ r r 7 ,  7 ,  7, 15 7,(7 * 7,) 

- 7  r 7  -7 r 7  

35  7(7 - 7,)3 

t [ (7?  .00*+7;, '*0'0R) 
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By substitcting 

and 

into (13), we deduce a compact expression for s2: 

Substituting (10) and (11) into (7)-(9) we obtain t h e  equations 

where 

which a r e  of the same form as (7)-(9). Thus, our problem now is to integrate the variational equa- 
tions of the form (7)-(9) with the right sides known. 
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Integration pr oc edur e. 

We shall make use of the substitutic.: 

5 = 5 ,  (17) 

which reduces (7)-(9) to the form integrable by Hili's procedure. Substituting (15) and (16) into 
(7), and making use oi the relation 

dZ r 
d t  

We obtain 

From (15) and (16), we have 

Differentiating (19) and taking (8) into consideration we obtain 

dw - pr H - _ -  
dt fi 

and 

where the integral sign represents the integral obtained in a formal manner; K , i s  the constant 
of integration. 

Taking (20), (21) and the equation 

dr ,ue s i n  f 
d t  
-:-  

6 
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i:ito account, we e?itziin froin (18): 

s i n  (7- f )  d t  1 7  2p2 rH d t  , 

where gl and x2 are conshnts Y; integration arid -i, 7 a r e  consideyed as temporary constants; after 
the intqrar:on is completed ::?cy ai-5 r c p k c d  by r ~ c d  f . 

Tile double integral in ( 2 2 )  can be simplified through integration by parts, and we obtain 

P P c P - 
(7 - f) + e cos 71 dt  . d t  = j y d t - J T  2p TrH b s  

Taking this last relation into consideration we deduce from (22) after some easy transformations 

r r 
u = 2K3 + K, ,cos f + K,, s i n f  + A , 

in which 

where 

-2cos ( i - - f )+2]  . 

The expressions M and N remain the same for the perturbations of all orders. They are to be de- 
veloped into a double Fourier se r ies  with respect to the mean anomaly l and with respect to the 
auxiliary mean anomaly 7, associated with the auxiliary true anomaly 'i. 
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After the integration is performed i is replaced by ? .  We have 

s 1 (w -2u )  d t  

and taking (21), (24), (25) and (26) into account, we deduce 

where 

an?, d t e r  some easy trasformatiocs, 

2 A d t  . 
narH c = 

- J 
The formulas for the computation of f, 17 and 5 become 

nae s i n  f 
6 = r u +  s ,  

r 
K, a cos f + K, 5 s i n  f + c , i z  
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where C is the standard expression 

r 2  df 
d t  - 

a2 *- 

is made. 

Determination of cGnstants of integration. 

We consider here the deterrr-ination of constants of integration for the case when the elements 
a r e  osculating at the epoch t = 0 and for  the case when they a r e  mean. If the elements are os- 
culating, then we have 

(G)* = 0 I (Z) 0 = 0 ,  

where the zero-sujscript designates the value of the expression at the epoch. From (33) we 
deduce 

= 0 ,  UO wo = 0 ,  ($) 0 = 0 ,  

Taking (21) into account, we obtain 

Differentiating (24) and taking the equatiocs 

d r  s i n  f 
; i ; t Z C O S f  = - -  

so = 0 

(33 ) 

(34) 
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into account, we deduce from (34): 

r0 1- " 
-"3 

+ K i  ; cos  f ,  + K, ;7 s in  f ,  - 
- - . I o  - - '  

s i n  f .  cos f , .  + e 

From these last equations we obtain 

A,' ro cos f ,  + e 

1 - e 2  
(Ao + 2K3) + - - K ,  = 

In a similar way we deduce 

CO' ro sin f ,  
K 6  - -  1 - . 2  co 

and putting t = 0 in (27) we deduce the following value for K, : 

The mean elements c a  be defined in severa! ways. VJs zccept here the following definition: 

(1) the perturbations of the true longitude h with respect to the orbit-plane defined by these 

the elements a r e  mean if 

elements do not contain the terms of the form 

(36) 
K O ,  K t ,  K(') COS 1 and K ( * )  s i n  1 ;  and 
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a .  * 

(2) the expression for the "third coordinate" 5 does not contain the terms of the form 

K(') cos 1 ,  K(') s i n  1 . 

We have 

. 

where 

and X;sm are Hansen's coefficients. 

Let us start with the determinatinn of constants of integration in the perturbations of the 
first order. Perturbations of the fbst qrck in the true longitude are given by the expression 7Jr. 
where 71 =' qzr  and consequently the terms (36) must be absent in the expression 

7) = (:y (-K3 + eK1) n t  
nr 

a' a' 

r 2 r 2  
+ - K , + - B  . 

We have to separate the terms of the form (36) in the development of az/r B : 

(37) 

(37') 
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The condition for absence of the constant te rm in (37') leads to the equation 

In a similar way we deduce 
4 

. 

3 
+ C0-'*O (-K3 + e K 1 )  t Po = 0 . 

Separating in C the terms with the argument I ,  

we obtain, taking (31) into account, 

In the planetary case the solutions of equations (38)-(43) can be found without any difficulty, 
because the coefficients only of one unknown in each equation a re  not small. The coefficients C;nm 

can be computed either by using the classical analytical expressions o r  by Cayley's tables (1861), 
o r  by means of harmonic analysis. The latter procedure is preferable if the eccentricity is not 
very small. 

Determination of constants of integration in higher order perturbations requires some addi- 
tional considerations. Let r l  , r 2 ,  

be the perturbations in the true longitude A of the first, second, etc., orders.  From 
- * be the perturbations in the radius-vector r and A 1, A, , * - 
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0 and substituting 

we obtain 

. 

consequently, 

'12 - 5, '11 
A ,  = r 

or, taking (30) into account, 

A, = n p $  (s, -6, s,) , 

where S, corresponds to the first and S, to the second order perturbations. A6 we see, before 
the determination of the constants of integration of the second order in the case of mean elements 
a correction term -El S, must be added to B,. For the perturbation of the third order a similar 
correction term will depend upon C,, S, , E , ,  S, . 

Conclusion 

A revival of the general interest in planetary theories can be observed in our time. Several 
scientific institutions are dedicating their time and efforts to the astronomical solution of the 
planetary problem. The results by Brouwer (1944), Gontkovskaya (1958) and Danby (1962) must 
especially be mentioned. A considerable amount of work on the theoretical exposition as well as 
on programming has also been done at the Theoretical Division of Goddard Space Flight Center. 
In the present article we suggest a new scheme which is convenient for computing the perturba- 
tions of the first as well as of higher orders. 

The determination of constants of integration in the case of both the osculatingand the mean ele- * 
rnents is a straightforward process in the proposed scheme. An importantfeature of the scheme is 
that the squares of small  divisors, as caused by the commensurability of mean motions, a r e  intro- 
duced by integration of only one expression, namely w - 2u. The short and the long period terms 
containing the squares of small divisors constitute a significant part in the perturbations e ,  7, 5 .  
The existence of such a direct way of separating these terms from the remaining perturbations 

. 
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L ' 1  I *  c '.. ' 

. 
constitutes a significant part of a planetary theory. The development here is kept in  the form 
which facilitates comparison with the results obtained on the basis of the classical form of Hill's 
theory, if necessary. 
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